Face Detection using Python and OpenCV with webcam

 Face Detection using Python and OpenCV with webcam



How to use :

  1. Create a directory in your pc and name it (say project)
  2. Create two python files named create_data.py and face_recognize.py, copy the first source code and second source code in it respectively.
  3. Copy haarcascade_frontalface_default.xml to the project directory, you can get it in opencv or from
    here.


  1. You are ready to now run the following codes.
create_data.py

# Creating database
# It captures images and stores them in datasets
# folder under the folder name of sub_data
import cv2, sys, numpy, os

haar_file = 'haarcascade_frontalface_default.xml'

# All the faces data will be
# present this folder
datasets = 'G:\PARAS\datasets' //make datasets as new folder like i did in this path then sub

# These are sub data sets of folder,
# for my faces I've used my name you can
# change the label here akhi is a sub folder insde datasets where web image will store by webcamera

sub_data = 'akhi'

path = os.path.join(datasets, sub_data)
if not os.path.isdir(path):
os.mkdir(path)

# defining the size of images
(width, height) = (130, 100)

# '0' is used for my webcam,
# if you've any other camera
# attached use '1' like this
face_cascade = cv2.CascadeClassifier(haar_file)
webcam = cv2.VideoCapture(0)

# The program loops until it has 30 images of the face.
count = 1
while count < 30:
(_, im) = webcam.read()
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 4)
for (x, y, w, h) in faces:
cv2.rectangle(im, (x, y), (x + w, y + h), (255, 0, 0), 2)
face = gray[y:y + h, x:x + w]
face_resize = cv2.resize(face, (width, height))
cv2.imwrite('% s/% s.png' % (path, count), face_resize)
count += 1

cv2.imshow('OpenCV', im)
key = cv2.waitKey(10)
if key == 27:
break
Datasets Storage :


face_recognize.py
# It helps in identifying the faces
import cv2, sys, numpy, os

size = 4
haar_file = 'haarcascade_frontalface_default.xml'
datasets = r'G:\PARAS\datasets'

# Part 1: Create fisherRecognizer
print('Recognizing Face Please Be in sufficient Lights...')

# Create a list of images and a list of corresponding names
(images, lables, names, id) = ([], [], {}, 0)
for (subdirs, dirs, files) in os.walk(datasets):
for subdir in dirs:
names[id] = subdir
subjectpath = os.path.join(datasets, subdir)
for filename in os.listdir(subjectpath):
path = subjectpath + '/' + filename
lable = id
images.append(cv2.imread(path, 0))
lables.append(int(lable))
id += 1
(width, height) = (130, 100)

# Create a Numpy array from the two lists above
(images, lables) = [numpy.array(lis) for lis in [images, lables]]

# OpenCV trains a model from the images
# NOTE FOR OpenCV2: remove '.face'
model = cv2.face.LBPHFaceRecognizer_create()
model.train(images, lables)

# Part 2: Use fisherRecognizer on camera stream
face_cascade = cv2.CascadeClassifier(haar_file)
webcam = cv2.VideoCapture(0, cv2.CAP_DSHOW) #captureDevice = camera
while True:
(_, im) = webcam.read()
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(im, (x, y), (x + w, y + h), (255, 0, 0), 2)
face = gray[y:y + h, x:x + w]
face_resize = cv2.resize(face, (width, height))
# Try to recognize the face
prediction = model.predict(face_resize)
cv2.rectangle(im, (x, y), (x + w, y + h), (0, 255, 0), 3)

if prediction[1] < 500:

cv2.putText(im, '% s - %.0f' %
(names[prediction[0]], prediction[1]), (x - 10, y - 10),
cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0))
else:
cv2.putText(im, 'not recognized',
(x - 10, y - 10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0))

cv2.imshow('OpenCV', im)

key = cv2.waitKey(10)
if key == 27:
break
Opencv Python program for Face Detection
  1. Put the haarcascade_eye.xml & haarcascade_frontalface_default.xml files in the same folder
# OpenCV program to detect face in real time
# import libraries of python OpenCV
# where its functionality resides
import cv2

# load the required trained XML classifiers
# https://github.com/Itseez/opencv/blob/master/
# data/haarcascades/haarcascade_frontalface_default.xml
# Trained XML classifiers describes some features of some
# object we want to detect a cascade function is trained
# from a lot of positive(faces) and negative(non-faces)
# images.
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# https://github.com/Itseez/opencv/blob/master
# /data/haarcascades/haarcascade_eye.xml
# Trained XML file for detecting eyes
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')

# capture frames from a camera
cap = cv2.VideoCapture(0)

# loop runs if capturing has been initialized.
while 1:

# reads frames from a camera
ret, img = cap.read()

# convert to gray scale of each frames
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Detects faces of different sizes in the input image
faces = face_cascade.detectMultiScale(gray, 1.3, 5)

for (x, y, w, h) in faces:
# To draw a rectangle in a face
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 2)
roi_gray = gray[y:y + h, x:x + w]
roi_color = img[y:y + h, x:x + w]

# Detects eyes of different sizes in the input image
eyes = eye_cascade.detectMultiScale(roi_gray)

# To draw a rectangle in eyes
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 127, 255), 2)

# Display an image in a window
cv2.imshow('img', img)

# Wait for Esc key to stop
k = cv2.waitKey(30) & 0xff
if k == 27:
break

# Close the window
cap.release()

# De-allocate any associated memory usage
cv2.destroyAllWindows()

Comments

Popular posts from this blog

Python to automate What's App messages

Redirecting to another page with button click in Python-flask

Install WAMP server to run python