Python Pandas As Json
Python Pandas As Json
Pandas gives you answers about the data. Like:
- Is there a correlation between two or more columns?
- What is average value?
- Max value?
- Min value?
Pandas are also able to delete rows that are not relevant, or contains wrong values, like empty or NULL values. This is called cleaning the data.
Installation of Pandas
If you have Python and PIP already installed on a system, then installation of Pandas is very easy.
(c) 2019 Microsoft Corporation. All rights reserved.
C:\Users\RCF>cd..
C:\Users>cd..
C:\>cd Python3.9.1
C:\Python3.9.1>cd Scripts
C:\Python3.9.1\Scripts>pip install pandas
Collecting pandas
Downloading pandas-1.2.0-cp39-cp39-win_amd64.whl (9.3 MB)
|████████████████████████████████| 9.3 MB 18 kB/s
Collecting python-dateutil>=2.7.3
Downloading python_dateutil-2.8.1-py2.py3-none-any.whl (227 kB)
|████████████████████████████████| 227 kB 19 kB/s
Collecting numpy>=1.16.5
Downloading numpy-1.19.5-cp39-cp39-win_amd64.whl (13.3 MB)
|████████████████████████████████| 13.3 MB 3.2 MB/s
Collecting pytz>=2017.3
Downloading pytz-2020.5-py2.py3-none-any.whl (510 kB)
|████████████████████████████████| 510 kB 68 kB/s
Requirement already satisfied: six>=1.5 in c:\python3.9.1\lib\site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)
Installing collected packages: python-dateutil, numpy, pytz, pandas
Successfully installed numpy-1.19.5 pandas-1.2.0 python-dateutil-2.8.1 pytz-2020.5
WARNING: You are using pip version 20.2.3; however, version 20.3.3 is available.
You should consider upgrading via the 'c:\python3.9.1\python.exe -m pip install --upgrade pip' command.
C:\Python3.9.1\Scripts> DONE
EXAMPLE LET 1
#!C:/Python3.9.1/python.exe
print("content-type: text/html\n\n" )
import pandas as pd
mydataset = {
'name': ["akhil", "aks", "nano"],
'passings': [3, 7, 2]
}
myvar = pd.DataFrame(mydataset)
print(myvar)
OPEN BROWSER AS :hi(python file name in my case)
http://localhost:81/python/hi.py
OUT{UT:
name passings 0 akhil 3 1 aks 7 2 nano 2
You can convert a Pandas DataFrame to a JSON object using the to_json()
method in Pandas. Here's an example to demonstrate how to do this:
Step 1: Install Pandas (if not installed)
If you don't have Pandas installed, you can install it using the following command:
Step 2: Example Code to Convert Pandas DataFrame to JSON
Explanation:
Creating the DataFrame: The sample
data
dictionary is used to create a DataFramedf
.Converting to JSON: The
to_json()
method is used to convert the DataFrame to a JSON string. Here, we use the following parameters:orient='records'
: This means the JSON will be in a record-oriented format, where each row becomes a dictionary.lines=True
: This creates a newline-delimited JSON (you can omit this if you want a compact single-line JSON).
Output: The output will be a JSON string.
Example Output:
Other orient
options for to_json()
:
'split'
: Dictionary with keys:index
,columns
, anddata
.'records'
: List of dictionaries (each dictionary is a row).'index'
: Dictionary with index as keys and rows as values.'columns'
: Dictionary with column names as keys and rows as values.
For instance, using orient='split'
:
Output:
This gives you flexibility depending on how you want the data formatted in your JSON.
Comments
Post a Comment